Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.
نویسندگان
چکیده
The amygdala, prefrontal cortex, striatum and other connected forebrain areas are important for reward-associated learning and subsequent behaviors. How these structurally and functionally dissociable regions are recruited during initial learning, however, is unclear. Recently, we showed amygdalar nuclei were differentially recruited across different stages of cue-food associations in a Pavlovian conditioning paradigm. Here, we systematically examined Fos induction in the forebrain, including areas associated with the amygdala, during early (day 1) and late (day 10) training sessions of cue-food conditioning. During training, rats in the conditioned group received tone-food pairings, while controls received presentations of the tone alone in the conditioning chamber followed by food delivery in their home cage. We found that a small subset of telencephalic and hypothalamic regions were differentially recruited during the early and late stages of training, suggesting evidence of learning-induced plasticity. Initial tone-food pairings recruited solely the amygdala, while late tone-food pairings came to induce Fos in distinct areas within the medial and lateral prefrontal cortex, the dorsal striatum, and the hypothalamus (lateral hypothalamus and paraventricular nucleus). Furthermore, within the perifornical lateral hypothalamus, tone-food pairings selectively recruited neurons that produce the orexigenic neuropeptide orexin/hypocretin. These data show a functional map of the forebrain areas recruited by appetitive associative learning and dependent on experience. These selectively activated regions include interconnected prefrontal, striatal, and hypothalamic regions that form a discrete but distributed network that is well placed to simultaneously inform cortical (cognitive) processing and behavioral (motivational) control during cue-food learning.
منابع مشابه
Differential recruitment of distinct amygdalar nuclei across appetitive associative learning.
The amygdala is important for reward-associated learning, but how distinct cell groups within this heterogeneous structure are recruited during appetitive learning is unclear. Here we used Fos induction to map the functional amygdalar circuitry recruited during early and late training sessions of Pavlovian appetitive conditioning. We found that a number of distinct amygdalar nuclei were differe...
متن کاملDifferential entrainment and learning-related dynamics of spike and local field potential activity in the sensorimotor and associative striatum.
Parallel cortico-basal ganglia loops are thought to have distinct but interacting functions in motor learning and habit formation. In rats, the striatal projection neuron populations (MSNs) in the dorsolateral and dorsomedial striatum, respectively corresponding to sensorimotor and associative regions of the striatum, exhibit contrasting dynamics as rats acquire T-maze tasks (Thorn et al., 2010...
متن کاملAltered fronto-striatal functions in the Gdi1-null mouse model of X-linked Intellectual Disability
RAB-GDP dissociation inhibitor 1 (GDI1) loss-of-function mutations are responsible for a form of non-specific X-linked Intellectual Disability (XLID) where the only clinical feature is cognitive impairment. GDI1 patients are impaired in specific aspects of executive functions and conditioned response, which are controlled by fronto-striatal circuitries. Previous molecular and behavioral charact...
متن کاملDynamic flexibility in striatal-cortical circuits supports reinforcement learning.
Complex learned behaviors must involve the integrated action of distributed brain circuits. While the contributions of individual regions to learning have been extensively investigated, much less is known about how distributed brain networks orchestrate their activity over the course of learning. To address this gap, we used fMRI combined with tools from dynamic network neuroscience to obtain t...
متن کاملFrontostriatal Maturation Predicts Cognitive Control Failure to Appetitive Cues in Adolescents
Adolescent risk-taking is a public health issue that increases the odds of poor lifetime outcomes. One factor thought to influence adolescents' propensity for risk-taking is an enhanced sensitivity to appetitive cues, relative to an immature capacity to exert sufficient cognitive control. We tested this hypothesis by characterizing interactions among ventral striatal, dorsal striatal, and prefr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuroscience
دوره 286 شماره
صفحات -
تاریخ انتشار 2015